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A new numerical procedure is proposed for solving
a set of algebraic equations being involved in typical
problems to monitor optically atmospheric objects. The
method is based on the statistical estimation theory,
can -use arbitrary a priori information, and provides
an increased stability of the solution.

The numerical solution is a universal way to
solve a  mathematical equation. For example, the
Fredholm integral equation of the first kind

[ o]

o(e)=S K(o,r)p(r)dr is reduced very often to a set of
0

linear algebraic equations

o - >
=Ko+ A, (1)
- i .
where ot is the vector-column of measurements (ol
>

.o ), ¢ the vector-column of searched parameters (¢

-9 ), K the matrix of first derivatives K —80 /3 -
Eq (1) is common for many problems, such as the
estimation of aerosol size distribution, auroral and
atmospheric tomography, temperature and humidity

atmosphere profiling, etc.
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The main difference of the inverse ( o - @ )
> -

and of the direct (¢ - o) problems is the capability
of noise A in initial data o to influence strongly on

the quality of a solution ¢ . That is why a procedure
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of solution optimization concerning the noise

influence is necessary to interpret real measurements
-

o . Because of a random character of the noise, the
statistical estimation approach is quite suitable for
this [1-3]. The optimal transformation of the

probability density function (PDF, likelihood
> > - '

function) of initial data P( o(p)le’) to PDF of the
-
searched parameters - P(wla') is the purpose of the
statistical estimation. The method of maximum
likelihood produces the optimal solution characterized
by the minimal variance of any parameter &i
estimation. For normal noise (substantial noise for
many situations [1]), the maximum likelihood solution

of (1) is the LSM solution:
>

_>
X'C,K p=K"C' o, (2)
o -
where CG' - covariance matrix of o . Consequently the
'LSM solution is optimal and unsatisfactory estimations

of LSM can be explained by the following reasons
9
1) the insufficient information content of o

concerning searched parameters s

2) an incorrect preliminary assumption (e.g. noise

distribution assumption);

3) disadvantages of standard operations to solve Eq. (2)
For a situation of 1low information content of

basic experiment, the only way to improve solution is

to add new data. To perform this operation, there are

many methods formulated on principals different from

above ones. For example,
L = T e eo
(K" K+71I) =K o + 7 ¢ - Twomey [4], (3)
_)

(K"K+70Q) p=K"¢ - Phillips [51], (4)
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C
(KTK+CYH p=K"0 - statistical regu- (5)
larization method [6],
wy

where I is the n x n - unit matrix, ¢° the sample
solution, Q the smoothing matrix, C the a priori
covariance matrix, ¥ the regularization parameter.

In statistical approach the use of additional
data can be implemented by solving the joint system

&, - -
c =Ko+ A
=, - -> (6)
, B =B+ A
>, > : .
where B = B ¢ - a set of equations for the known
T

additional data B'. Assumption on normally distributed

noise in all the data of (6) and on the statistical
- -

independence of o and B‘ gives the LSM solution of

(6) to be a solution of the equation system
_)

- - y
&'C2 K + BT c; B) ¢ = KTc;i o+ Bch;i B, (7)
where CB* - covariance matrix of g".

In particular cases, Eq. (7) can be transformed to
<(3)—(5) and all parametere)_ﬁfeceive suitable
interpretation. For example, if B'=¢', C¢"=Id . ef ¥
Co* = Imxme;,_)Eq.(S) is obtained with parameters
7=(eo/el){ 0%-p". Correspondingly, ??S solutionllis

; 1

expected in the region 616 [¢:—2 €, - ¢:+2 €,7
with probability 96% .

The reasons 2) and 3) should also be considered
‘because of the disagreement between the LSM theory and
real experience. Firstly, a priori information about
non-negativity can not be correctly included in (7).
Secondly, the LSM solution can be less stable than the
solution of Eq. (1) by other methods, such as

PPt = 9" (o] /o] ) - (8)

1

Chahine method [7] (for square matrix K with diagonal
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elements prevailed);

ptt!l =gt rI (1 (0" [e? - D) KD (9)
Twomey-Chahine method [8]. These methods have not been
formulated on the statistical basis and can not be
reduced to a particular case of (2) or (7). They
provide the non-negative and quite a stable solution.
Often, it is better than the LSM solution [8].

A priori information about non-negativity of
measured or searched values can be, in the scope of a
statistical approach, included in the solution by
changing the strategy of normal noise to the
log-normal noise distribution [9], because of:

- a log-normally distributed random value aj is
obviously to be positively defined;

- there is a number of the theoretical - and
experimental reasons [1] showing that log-normal noise
is quite close to real one;

- using the log-normal PDF for a is simple to be
performed by transforming the problem to the space of
normally distributed logarlthms fj lnoj, a= lnwr

Thus, solving Eq.(6) for the logarithmic space

=1n¢i, fj=1naj, di=1nBi transforms this problem into
a non-linear problem. Accordingly, the solution of (6)

is obtained by the iterative scheme of Newton-Gauss
- - > = 5> £10)

aP*'=a?_(UTCc"'u +D"C7!D )~ (UTCT ! (£P-£7)4DTCTL(dP-d"))
B i R D Py Py
where Up and Dh are matrices of first derivatives
80 /da |2 ,38d /3a l2p ; C+ and C+ the covariance
J i a _)j 1_>a f d
matrices of f and d’. ‘
Besides, let us use the simple linear iterations
[10] to stabilize solution
> - - =

P =9 - H (K9* -0 ), (11)
where H - diagonal matrix instead of the standard

186

== T




operator of matrix inversion (KTqu. The main
question here is the formulation of H - matrix that
provides the convergence of iterations. Statistical

approach applles the iterative inversion to solve (6)
- »

_)
Pt = ¢ e & c + o - BF cB‘ s Yk 113

In this process, the follow1ng formulation of a
diagonal matrix H is very fruitful [9]

(B3 = Z P Eon g (13)

where I{Q}ikl - the absolute values of a ik-th element
of the Fisher matrix @. The great advantage of
H-matrix choice (13) is the fact that even in a case
of det®=0, the prqfess (12) provides the optimization

of the solution ¢° with the peculiarity that this
optimization is implemented in the space of the
solution with reduced dimension n’ (n>n’ is the & -
matrix rank). '

So, the method (12) is attractive to be used to
solve linear inverse problems (1), (6) due to it is:
-quite a stable (evén. in searching large number of
parameters);

-based on the statistical estimation approach;

-simple for implementation with the universal H-matrix.
The non-linear scheme (10) can be caused to

include the process (12) by joining the two iterative

processes: general non-linear one (10) and process of

linear solution at each step of (10).

- - b W s
al*'=a% - H (UTC“i (F9-£") + DTC'i(dq—d )),  (14)
d
where {H } | —[Z(I{U c .U +D c D b 54 )17 '=R( e}, D).

f=1 i=1
This joining is consonant to the Levenberg-Marquardt

idea [11] improving non-linear inversion by "cutting"
._)

the length of the p-th step Aa®. The length Aa® in
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9
(14) is obvious to be shorter than Aa® of (10).

Thus, this paper is aimed to consider, in the
scope of a single approach, the two kinds of numerical
inversion methods: methods including the matrix
inversion operator and iterative ones without that
operator. They are very often considered as opposite
to each other. As a result, the procedure (14) uniting
the advantages of the methods of both groups is
proposed.
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